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Abstract
For a continuum model of one-dimensional anharmonic crystal lattices at finite
temperatures, which was derived from a statistical-mechanical model proposed
recently, we clarify the classification of its differential system. That is, we
determine not only the strict hyperbolicity and convexity regions but also the
elliptic and parabolic regions in the space of the state. The melting point
is found to be on the boundary of the convexity region. Then we derive
the Rankine–Hugoniot relations, and we prove that the admissible shocks are
always in the stable region of convexity.

PACS numbers: 05.70.Ln, 46.05.+b, 47.40.Sn, 61.50.Ah

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The entropy principle plays a fundamental role in thermodynamics of continua. In fact it
provides a powerful constraint in order to select the physical constitutive equations in the
case of classical solutions, and for hyperbolic theories it becomes a fruitful selection rule for
admissible weak solutions [1, 2]. Furthermore, if the principle is combined with the stability
requirement of the concavity of the entropy density in the thermodynamical context or the
convexity of energy in the mechanical or electrodynamic case, it permits us to rewrite the
field equations in the form of a symmetric hyperbolic system through the introduction of
the privileged main field components [3–5].

On the other hand, in nonlinear theories the hyperbolicity and in particular the concavity
of the entropy density may be valid only in some region of state variables. Typical examples
are the nonlinear elasticity in which the full concavity is in contrast to the objectivity
principle if the deformation is large. And the concavity is true only for sufficiently small
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deformations in a neighbourhood of the undeformed configuration [6] (see also [1]); in
nonlinear electrodynamics of Born and Infeld in which the convexity of energy remains
verified if the electric field is less than a limit value [4]. Another interesting case is that of
extended thermodynamics in which the hyperbolicity and the concavity are verified only in a
neighbourhood of an equilibrium state [7].

The knowledge of the hyperbolicity region is mandatory to check the admissibility of the
solutions and the corresponding boundary and Cauchy data. Moreover the convexity3 is a
necessary condition for the well posedness of the Cauchy problem (local in time) [1, 8, 9].

In the first part of this paper we will study the classification of the differential system
for a continuum model of one-dimensional anharmonic crystal lattices at finite temperatures
[10]. The model takes thermal vibration of constituent atoms into account explicitly, and
it was derived from a nonequilibrium statistical-mechanical model of crystal lattices with
a continuum approximation. As is well known, crystal lattices have been a good physical
model to study nonlinear waves propagating in solids [11]. We will clarify several interesting
features from both mathematical and physical points of view; that is, we will prove that
there exist several regions in the state space across which the system of equations changes its
differential structure: a region in which the system is strictly hyperbolic and regions in which
the system is parabolic or elliptic. The region in which the convexity holds and the system is
symmetric hyperbolic is, according to the general theory, a subset of the strictly hyperbolic
region. Thermodynamically stable states are always in the convexity region, a definition of
which will be given below, except for the limiting case, i.e. the melting point, which is on the
boundary of the convexity region.

In the second part of the paper we will study shock waves in the crystalline solids, and
we will prove that the admissibility Lax conditions guarantee that all the Rankine–Hugoniot
curves give rise to processes in the convexity region.

2. System of differential equations for crystalline solids

We here briefly summarize the field equations for the continuum model of one-dimensional
anharmonic crystal lattices at finite temperatures [10] with atomic mass M, lattice constant ae,
and interatomic potential given by the Morse function

φ(x) = D(e−2α(x−r0) − 2 e−α(x−r0)),

where D, α and r0 are material constants [12, 13].
The variables in the field equations are the dimensionless quantities d(X, t),

q(X, t), g(X, t) and r(X, t) defined below. Here X is the position of a material point in
the reference configuration, and t is the time. As the reference configuration the thermal
equilibrium state at absolute temperature T with no external force and no translation motion
is adopted. The physical meaning of the four quantities mentioned above can be understood
easily from their definitions [10, 14]:

∂

∂X
〈h(X, t)〉 ≡ (αae)

−1d(X, t),
∂

∂t
〈h(X, t)〉 ≡

√
D

M
q(X, t),

〈[h(X, t) − 〈h(X, t)〉]2〉 ≡ α−2[λ + g(X, t)], (1)〈[
∂

∂t
(h(X, t) − 〈h(X, t)〉)

]2
〉

≡ D

M

[
kBT

D
+ r(X, t)

]
,

3 In what follows we will always refer to the convexity with the usual convention to consider, in the thermodynamical
case, the entropy density changed in sign.
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where 〈 〉 stands for a statistical average over the non-equilibrium distribution function, h(X, t)

is the displacement of a constituent atom from its thermal equilibrium point X and kB is the
Boltzmann constant. The quantity λ is the reduced mean square displacement due to the
thermal vibration in the reference equilibrium state

λ = α2〈[h(X, t)]2〉equilibrium

which is related to the temperature T such that [14]
kBT

4D
= λ e−2λ.

The field equations, that is, the conservation laws of mass, momentum and energy, are
summarized as follows:

�−1 ∂d

∂t
− ae

∂q

∂X
= 0,

�−1 ∂q

∂t
+ ae

∂π

∂X
= 0, (2)

�−1 ∂ε

∂t
+ ae

∂qπ

∂X
= 0,

where � is a microscopic characteristic frequency of atomic vibration defined by

� = α

√
D

M
.

The dimensionless pressure π and the dimensionless energy density ε are given by

π = 2e−2λ(e4g−2d − eg−d),
(3)

ε = 1

2

(
kBT

D
+ q2 + r

)
+ e−2λ(e4g−2d − 2eg−d) = 1

2
q2 + u,

with u being dimensionless internal energy density.
In addition to the field equations, there exists an equation of state [10] such that

r = 4e−2λ(λ + g)(2e4g−2d − eg−d) − 4λ e−2λ. (4)

By using this equation we may eliminate the quantity r in the quantities ε and u.
In the following it is convenient to introduce the new variables:

ψ = e−2d+4g; j = 2

ψ
e−d+g; ĝ = g + λ; (5)

(̂g � 0 from (1)3). Then from (3) and (4) we have

π = e−2λψ(2 − j); ε = 1

2

(
kBT

D
+ q2 + r

)
+ e−2λψ(1 − j);

r = e−2λ(−4λ + 2̂gψ(4 − j)).

3. Hyperbolicity region

System (2) is a particular case of a system of conservation laws
∂F(u)

∂t
+

∂G(u)

∂X
= 0 (6)

through the identification

F(u) ≡
d

q

ε

 , G(u) ≡ ae�

−q

π

qπ

 ,
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and choosing for example as field variables:

u ≡
d

q

g

 .

As is well known, system (6) is hyperbolic in time direction if the associated eigenvalue
problem

(B(u) − vA(u))d = 0; A(u) = ∇uF(u), B(u) = ∇uG(u) (7)

admits real eigenvalues v (characteristic velocities) and a set of linearly independent
eigenvectors d. In the case of acceleration waves the jump of the normal derivative across
the wave front is proportional to the right eigenvector, and a disturbance propagates with the
characteristic velocity [4, 15]. It is possible to obtain (7) from (6) through the formal chain
rule of operators,

∂

∂t
→ −vδ,

∂

∂X
→ δ,

that have the advantage of not requiring the explicit expression for the matrices A and B. With
these symbols δu identifies with the right eigenvector.

Let us introduce the dimensionless characteristic velocity

w = v

ae�
;

then from equation (2)1 we obtain

δq = −wδd (8)

while from (2)2 taking into account (8)

δg = e2λw2 + (j − 4)ψ; δd = (j − 8)ψ. (9)

Finally from (2)3 we obtain the characteristic velocities:

w = 0; w2 = −2e−2λψ

(2 + ĝ)

(j − j1)(j − j2)

j − j3
, (10)

where

j1 = 4 + ĝ −
√

ĝ(8 + ĝ),

j2 = 4 + ĝ +
√

ĝ(8 + ĝ), (11)

j3 = 8
1 + 2̂g

2 + ĝ
.

Therefore the three right eigenvectors are given such that

d ≡
 (j − 8)ψ

−w(j − 8)ψ

e2λw2 + (j − 4)ψ

 , (12)

where w is one of the three roots of (10).
From (10) and (11) it is easy to see that the strict hyperbolicity region (distinct

characteristic velocities) is the following region of the plane {̂g, j}:
Dh : {j < j1∀ ĝ, or j3 < j < j2 and ĝ �= 1}, (13)

see figure 1.
For j = j2, or j = j1, we have w = 0; i.e. we have a triple eigenvalue and strict

hyperbolicity is lost but the system also loses the hyperbolicity because in this case we do not
have a set of linearly independent eigenvectors (see (12)).

For j → j3 and ĝ �= 1, w → ∞ and the system becomes parabolic.
In the other regions the system has complex eigenvalues and therefore has elliptic

behaviour.
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Figure 1. Hyperbolicity domain (grey region) in the state space (ĝ, j).

4. Symmetric hyperbolic system and convexity region

It is easy to verify that all classical solutions of system (2) also satisfy the balance of entropy
∂S

∂t
= 0, (14)

where the entropy density is given by [10]

S = kB

2
ln

{
1 +

1

λ

(
e2λ

4
r + g

)
+

e2λ

4λ2
gr

}
.

Therefore the differential system (2) and the entropy law (14) belong to the general theory
of systems of conservation laws (6) with a supplementary law

∂h(u)

∂t
+

∂k(u)

∂X
= 0

with, in the present case,

h = − S

kB

; k = 0.

In this case, it is well known [3–5] that system (6) can be rewritten as a symmetric
hyperbolic system in the sense of Friedrichs provided that we choose as field variables the
main field

u′ = ∂h(u)

∂u
; u ≡ F (15)

and that h is a convex function of u. In fact it is possible to introduce the Legendre transform
of h,

h′ = u′ · u − h,
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and the potential

k′ = u′ · G − k

such that we have

u = ∂h′(u′)
∂u′ ; G =∂k′(u′)

∂u′ . (16)

Therefore taking into account (16), system (6) (with u ≡ F) becomes

A′(u′)
∂u′

∂t
+ B′(u′)

∂u′

∂X
= 0

with

A′(u′) = ∂2h′(u′)
∂u′∂u′ symmetric and positive definite

and

B′(u′) = ∂2k′(u′)
∂u′∂u′ symmetric.

The symmetric systems have very good properties concerning the qualitative analysis. In
fact the Cauchy (local in time) problem is well posed [1, 8, 9]. Therefore the crucial point of
this technique is to evaluate the main field and then to verify the convexity of h with respect
to u, or equivalently the convexity of the Legendre transform h′ with respect to the dual field
u′. For that it is sufficient to verify that the quadratic form

Q = δu′ · δu

is positive definite.
In fact from (15) and (16) we have

Q = δu′ · δu = δ

(
∂h(u)

∂u

)
· δu = δuT ∂2h(u)

∂u∂u
δu > 0, ∀ δu �= 0

or

Q = δu′ · δu = δu′·δ
(

∂h′(u′)
∂u′

)
= δu′ ∂

2h′(u′)
∂u′∂u′ δu′T > 0, ∀ δu′ �= 0.

Now as we mentioned in the introduction there exist physical cases in which the convexity
does not hold for all the values of the field variables. In this case it is very important to establish
the domain of the convexity because the boundary of this domain gives the boundary of the
instability region of the system.

The aim of this section is therefore to evaluate the convexity region in which our system
is symmetric hyperbolic. This is easy because we observe that system (2) is a particular case
of the one-dimensional nonlinear elasticity, and Boillat and Ruggeri have evaluated the main
field [16]. In our notation we have

u′ ≡ 1

θ
(−π, q,−1),

where θ is the dimensionless absolute temperature of a perturbed state given by [10]

θ = r + 4e−2λλ.

Therefore in this case we obtain

θQ = (δq)2 +
(π

θ
δθ − δπ

)
δd +

1

θ
δθδu > 0, ∀ (δd, δq, δg) �= 0

that imply

Q∗ =
(π

θ
δθ − δπ

)
δd +

1

θ
δθδu > 0, ∀ (δd, δg) �= 0. (17)
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Figure 2. Hyperbolicity region (see also figure 1) and convexity domain (dark grey region) in the
space state (ĝ, j).

Simple calculations reveal that (17) is true if and only if the associated matrix of the
quadratic form

Q∗ ≡
(

a0 b0

b0 c0

)
(18)

with 

a0 = ĝ(j − 8)2 + (j − 4)2

(4 − j)j 2

b0 = (̂g(j − 16) + (j − 4))(j − 8)

(j − 4)j 2

c0 = − (̂g(j − 16) + 2(j − 4))(−4 + ĝ(j − 16) + j)

(j − 4)j 2

(19)

is positive definite.
It is easy to see that a0 > 0 if j < 4, and det Q∗ for j < 4 is positive if and only if

j < j4 (20)

with

j4 = 2(2 + ĝ −
√

ĝ(4 + ĝ)). (21)

According to the general theory the convexity region Dc is a subset of Dh:

Dc : {j < j4} ⊂ Dh (22)

and is depicted in figure 2.
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4.1. Thermal equilibrium states, melting point and thermodynamic stability

Thermal equilibrium states under no external force correspond to d = 0, g = 0; then in the
previous variables they can be rewritten as j = 2, ĝ = λ. By considering the intersection
between the lines j = 2 and the curve j = j1 (see figure 2), we notice the fact that the thermal
equilibrium states are inside the hyperbolicity domain if λ < 1. And this fact is consistent
with the result [10] that the sound velocity now is the root of (see (10)2)

w2
E = 4e−2λ 1 − λ

2 + 7λ
. (23)

On the other hand, by considering the intersection between the line j = 2 and the curve j = j4

(see figure 2), we understand that the requirement for the equilibrium state under no external
force to be in the convexity domain, that is the requirement of thermodynamic stability of the
equilibrium states means λ < 1/2. Therefore the melting point with the value λ = 1/2 is
the critical state in the sense that it is on the boundary of the convexity domain and therefore
becomes to be thermodynamically unstable [14].

By similar reasoning, we can conclude that only the state within the convexity domain
are thermodynamically stable and the states on the boundary of the convexity domain are the
critical states (melting points under nonzero external forces).

5. Shock waves

We consider a shock wave propagating in a reference equilibrium state d = g = 0. Taking
into account the well-known Rankine–Hugoniot conditions associated with system (6):

−̃s[F] + [G] = 0

( s̃ is the shock speed, and the bracket [ ] indicates the jump of the quantify across the shock
front).

In this case, introducing the dimensionless speed s = s̃/(ae�) it is easy to verify the
existence of three families of shocks.

• The characteristic shock s = 0, which in the space of states (d, j) is represented by the
curve C0 of the equation

g = 1
3d (24)

and q = 0.
• The sonic shocks with velocities

s = ±
√

2G e−2λ(J − G3)

J 2d
(G = eg, J = ed), (25)

and curves C+ and C− with the equation g(d) which is the implicit solution of

J 2(1 − 2λ) + G4(1 + 4̂g + d) − GJ {2(1 + ĝ) + d} = 0 (26)

and q = −sd. An explicit expression of g(d) for weak shocks was obtained in [10].
For example, for λ = 1/8 figure 3 represents the sonic shocks and the characteristic (or

contact) shock. From a mathematical point of view the Rankine–Hugoniot curves also pass in
the non-convexity region (right side of the curve � in figure 3). But it is simple matter to see
that for any λ < 1/2 the admissible shock region satisfying the Lax condition is the one for
which d < 0. Therefore the shock process Sp is always in the convexity region

Sp ∈ Dc. (27)
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Figure 3. Rankine–Hugoniot curves for the characteristic shock C0 and the sonic shocks C+ and
C− in the state space (d, g) with λ = 1/8. The curve � is the boundary of the convexity domain.
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Figure 4. Admissible Lax region for shocks is shown as the grey region. The plots represent
the velocities w, s and wE normalized by the unperturbed velocity wE versus the dimensionless
deformation d.

In fact for any λ taking into account (10), (25) and ( 26) along C± (see (26)), we obtain

w2
E < s2 < w2 (28)

if and only if d < 0 see figure 4.
Therefore we conclude that the admissible shocks C+, C− and C0 are always processed

in the convexity regions. See figure 5 for different values of λ. The � curves indicate, for
different values of λ, the boundaries of the convexity region (the left side of �). We observe
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C− in the state space (d, g) with λ = 1/8, 1/4 and 1/2. The curves � are the boundaries of the
convexity region.

that for λ = 1/2 (melting point) the reference equilibrium state is on the boundary of the
convexity region.

6. Conclusions

It is well known that the physics of nonlinear waves in one-dimensional anharmonic crystal
lattices has a long history and has been useful to find out new concepts in the research
fields of nonlinear waves and of nonlinear mechanics. Here we have clarified the differential
structures of the continuum model of crystal lattices by considering both mechanical and
thermodynamical properties in terms of the variables in the space of state.

In this analysis, we have found the importance of the thermal vibration, or more exactly the
variance of the displacement of a constituent atom, as one of the independent variables in the
model. In a thermo-elastic model, however, the temperature, or the variance of the conjugate
momentum in our terminology, has usually been adopted as an independent variable. Owing
to the explicit use of the thermal vibration in our model, we can analyse dynamical states of
the system, especially those near the melting point.

Now let us summarize the results obtained here. First of all we have determined explicitly
the differential structure of the model determining in the space of states the region in which
the system is strictly hyperbolic and symmetric. The convexity region in which the system is
symmetric contains the thermodynamically stable states, and its boundary corresponds to the
melting points with and without external force.

Furthermore we have shown that all the admissible processes of shock type are always in
the region of convexity, namely in the thermodynamically stable region.

Having the analytical results obtained here we are now being able to study, for example,
the Riemann problem and the interaction between acceleration waves and shock waves, which
will soon be reported.
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